题目内容

已知O为坐标原点,A,B是圆x2+y2=1分别在第一、四象限的两个点,C(5,0)满足:
OA
OC
=3
OB
OC
=4
,则
OA
+t
OB
+
OC
(t∈R)
模的最小值为
4
4
分析:设A(cosα,sinα),B(cosβ,sinβ),则
OA
=(cosα,sinα),
OB
=(cosβ,sinβ),
OC
=(5,0)
,利用
OA
OC
=3
OB
OC
=4
,A,B是圆x2+y2=1分别在第一、四象限的两个点,可得
OA
=(
3
5
4
5
)
OB
=(
4
5
,-
3
5
)
,从而可得
OA
+t
OB
+
OC
=(
4t+28
5
4-3t
5
)
,由此可求
OA
+t
OB
+
OC
的模长的最小值.
解答:解:设A(cosα,sinα),B(cosβ,sinβ),则
OA
=(cosα,sinα),
OB
=(cosβ,sinβ),
∵C(5,0),∴
OC
=(5,0)

OA
OC
=3
OB
OC
=4

∴5cosα=3,5cosβ=4
cosα=
3
5
cosβ=
4
5

∵A,B是圆x2+y2=1分别在第一、四象限的两个点
sinα=
4
5
,sinβ=-
3
5

OA
=(
3
5
4
5
)
OB
=(
4
5
,-
3
5
)

OA
+t
OB
+
OC
=(
4t+28
5
4-3t
5
)

OA
+t
OB
+
OC
的模长=
(
4t+28
5
)
2
+(
4-3t
5
)
2
=
t2+8t+32
=
(t+4)2+16
≥4
故答案为:4
点评:本题考查向量知识的运用,解题的关键是确定向量的坐标,利用配方法求最值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网