题目内容
位于函数![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214011986712618/SYS201310232140119867126019_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214011986712618/SYS201310232140119867126019_ST/1.png)
【答案】分析:由Pn的横坐标构成以
为首项,-1为公差的等差数列{xn},求出数列{xn}的通项公式,并代入函数
的解析式,不难确定点Pn的坐标;
解答:解:由于Pn的横坐标构成以
为首项,-1为公差的等差数列{xn},
故
.
又Pn(xn,yn)位于函数
的图象上,
所以y
.
所求点Pn(xn,yn)的坐标为(
.
点评:本题考查的知识点是等差数列的通项公式,及直线的方程,由由Pn的横坐标构成等差数列{xn},我们不难根据已知求出数列{xn}的通项公式,代入直线方程,求出对应的纵坐标,即可得到点的坐标.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214011986712618/SYS201310232140119867126019_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214011986712618/SYS201310232140119867126019_DA/1.png)
解答:解:由于Pn的横坐标构成以
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214011986712618/SYS201310232140119867126019_DA/2.png)
故
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214011986712618/SYS201310232140119867126019_DA/3.png)
又Pn(xn,yn)位于函数
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214011986712618/SYS201310232140119867126019_DA/4.png)
所以y
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214011986712618/SYS201310232140119867126019_DA/5.png)
所求点Pn(xn,yn)的坐标为(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214011986712618/SYS201310232140119867126019_DA/6.png)
点评:本题考查的知识点是等差数列的通项公式,及直线的方程,由由Pn的横坐标构成等差数列{xn},我们不难根据已知求出数列{xn}的通项公式,代入直线方程,求出对应的纵坐标,即可得到点的坐标.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目