题目内容

【题目】某兴趣小组在科学馆的帕斯卡三角仪器前进行探究实验.如图所示,每次使一个实心小球从帕斯卡三角仪器的顶部入口落下,当它在依次碰到每层的菱形挡板时,会等可能地向左或者向右落下,在最底层的7个出口处各放置一个容器接住小球,该小组连续进行200次试验,并统计容器中的小球个数得到柱状图:

(Ⅰ)用该实验来估测小球落入4号容器的概率,若估测结果的误差小于,则称该实验是成功的.试问:该兴趣小组进行的实验是否成功?(误差

(Ⅱ)再取3个小球进行试验,设其中落入4号容器的小球个数为,求的分布列与数学期望.(计算时采用概率的理论值)

【答案】(Ⅰ)是成功的;(Ⅱ)详见解析.

【解析】

(Ⅰ)求出小球落入4号容器的概率的理论值,问题得解.

(Ⅱ)直接利用二项分布求解。

解:(Ⅰ)小球落入4号容器的概率的理论值为.

小球落入4号容器的概率的估测值为.

误差为,故该实验是成功的.

(Ⅱ)由(Ⅰ)可得,每个小球落入4号容器的概率为,未落入4号容器的概率为.

.

的分布列为

由于,所以.

练习册系列答案
相关题目

0

1

2

3

反馈点数

1

2

3

4

5

销量(百件)/天

0.5

0.6

1

1.4

1.7

(1)经分析发现,可用线性回归模型拟合当地该商品一天销量(百件)与该天返还点数之间的相关关系.请用最小二乘法求关于的线性回归方程,并预测若返回6个点时该商品当天销量;

(2)若节日期间营销部对商品进行新一轮调整.已知某地拟购买该商品的消费群体十分庞大,经过营销部调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:

返还点数预期值区间(百分比)

频数

20

60

60

30

20

10

将对返还点数的心理预期值在的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取3名进行跟踪调查,求抽出的3人中至少有1名“欲望膨胀型”消费者的概率.(参考公式及数据:①回归方程,其中;②.)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网