题目内容

【题目】已知两点,动点两点连线的斜率满足.

(1)求动点的轨迹的方程;

(2)是曲线轴正半轴的交点,曲线上是否存在两点,使得是以为直角顶点的等腰直角三角形?若存在,请说明有几个;若不存在,请说明理由.

【答案】);(3

【解析】试题()求动点的轨迹方程的一般步骤:1.建系——建立适当的坐标系.2.设点——设轨迹上的任一点Pxy).3.列式——列出动点P所满足的关系式.4.代换——依条件式的特点,选用距离公式、斜率公式等将其转化为xy的方程式,并化简.5.证明——证明所求方程即为符合条件的动点的轨迹方程.

)由题意可知设所在直线的方程为,则所在直线的方程为分别联立椭圆方程求得弦长,再由解方程即可

试题解析:()设点的坐标为,,, 2

依题意,所以,化简得, 4

所以动点的轨迹的方程为. 5

:如果未说明(或注,1.

)设能构成等腰直角,其中,

由题意可知,直角边,不可能垂直或平行于,故可设所在直线的方程为,

(不妨设,所在直线的方程为7

联立方程,消去整理得,解得,

代入可得,故点的坐标为.

所以, 9

同理可得,,,

所以,整理得,解得11

斜率,斜率;当斜率,斜率

斜率,斜率,

综上所述,符合条件的三角形有. 14

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网