题目内容
【题目】已知向量 =(1, ), =(sinx,cosx),设函数f(x)=
(1)求函数f(x)的最小正周期和最大值;
(2)设锐角△ABC的三个内角A,B,C的对边分别为a,b,c,若c= ,cosB= ,且f(C)= ,求b.
【答案】
(1)解:f(x)=sinx+ cosx=2sin(x+ ),
∴f(x)的最小正周期T=2π,f(x)的最大值为2
(2)解:∵f(C)=2sin(C+ )= ,∴sin(C+ )= ,
∵0 ,∴C= .
∵cosB= ,∴sinB= .
由正弦定理得 ,∴ ,
解得:b= .
【解析】(1)根据向量的数量积公式得出f(x)解析式,使用和角公式化简,结合正弦函数的性质得出答案;(2)根据f(C)= 得出C,根据同角三角函数的关系计算sinB,由正弦定理得出b.
【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:,以及对余弦定理的定义的理解,了解余弦定理:;;.
练习册系列答案
相关题目
【题目】某书店销售刚刚上市的某知名品牌的高三数学单元卷,按事先拟定的价格进行5天试销,每种单价试销1天,得到如下数据:
单价(元) | 18 | 19 | 20 | 21 | 22 |
销量(册) | 61 | 56 | 50 | 48 | 45 |
(1)求试销5天的销量的方差和对的回归直线方程;
(2)预计今后的销售中,销量与单价服从(1)中的回归方程,已知每册单元卷的成本是14元,为了获得最大利润,该单元卷的单价卷的单价应定为多少元?
(附:)