题目内容
【题目】某书店销售刚刚上市的某知名品牌的高三数学单元卷,按事先拟定的价格进行5天试销,每种单价试销1天,得到如下数据:
单价(元) | 18 | 19 | 20 | 21 | 22 |
销量(册) | 61 | 56 | 50 | 48 | 45 |
(1)求试销5天的销量的方差和对的回归直线方程;
(2)预计今后的销售中,销量与单价服从(1)中的回归方程,已知每册单元卷的成本是14元,为了获得最大利润,该单元卷的单价卷的单价应定为多少元?
(附:)
【答案】(1)方差,对的回归直线方程为:;(2).
【解析】试题分析:对于问题(1),根据题目条件并结合表格数据即可求出试销天的销量的方差,再根据公式即可求出对的回归直线方程;对于问题(2),可根据(1)的结论列出利润关于单价的二次关系式,然后再利用二次函数即可求出所需的结论.
试题解析:(1)∵,
∴
∵,
∴
所以对的回归直线方程为:
(2)获得的利润,
∵二次函数的开口朝下,∴当时,取最大值.
∴当单价应定为元时,可获得最大利润.
【题目】某成衣批发店为了对一款成衣进行合理定价,将该款成衣按事先拟定的价格进行试销,得到了如下数据:
批发单价x(元) | 80 | 82 | 84 | 86 | 88 | 90 |
销售量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回归直线方程 ,其中
(2)预测批发单价定为85元时,销售量大概是多少件?
(3)假设在今后的销售中,销售量与批发单价仍然服从(1)中的关系,且该款成衣的成本价为40元/件,为使该成衣批发店在该款成衣上获得更大利润,该款成衣单价大约定为多少元?
【题目】下表提供了某厂节能降耗技术改造后生产产品过程中记录的产量x(吨)与相应的生产能耗y(吨)标准煤的几组对照数据:
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(1)求y关于x的线性回归方程;(已知 )
(2)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低了多少吨标准煤.