题目内容
【题目】 设椭圆的左焦点为,左顶点为,顶点为B.已知(为原点).
(Ⅰ)求椭圆的离心率;
(Ⅱ)设经过点且斜率为的直线与椭圆在轴上方的交点为,圆同时与轴和直线相切,圆心在直线上,且,求椭圆的方程.
【答案】(I)首先设椭圆的半焦距为,根据题意得到,结合椭圆中的关系,得到,化简得出,从而求得其离心率;
(II)结合(I)的结论,设出椭圆的方程,写出直线的方程,两个方程联立,求得交点的坐标,利用直线与圆相切的条件,列出等量关系式,求得,从而得到椭圆的方程.
【解析】
(I);
(II).
(I)解:设椭圆的半焦距为,由已知有,
又由,消去得,解得,
所以,椭圆的离心率为.
(II)解:由(I)知,,故椭圆方程为,
由题意,,则直线的方程为,
点的坐标满足,消去并化简,得到,
解得,
代入到的方程,解得,
因为点在轴的上方,所以,
由圆心在直线上,可设,因为,
且由(I)知,故,解得,
因为圆与轴相切,所以圆的半径为2,
又由圆与相切,得,解得,
所以椭圆的方程为:.
练习册系列答案
相关题目
【题目】某种产品的质量按照其质量指标值M进行等级划分,具体如下表:
质量指标值M | |||
等级 | 三等品 | 二等品 | 一等品 |
现从某企业生产的这种产品中随机抽取了100件作为样本,对其质量指标值M进行统计分析,得到如图所示的频率分布直方图.
(1)记A表示事件“一件这种产品为二等品或一等品”,试估计事件A的概率;
(2)已知该企业的这种产品每件一等品、二等品、三等品的利润分别为10元、6元、2元,试估计该企业销售10000件该产品的利润;
(3)根据该产品质量指标值M的频率分布直方图,求质量指标值M的中位数的估计值(精确到0.01)