题目内容
【题目】已知抛物线C:y2=2px(p>0)的焦点为F,以抛物线C上的点M(x0 , 2 )(x0> )为圆心的圆与线段MF相交于点A,且被直线x= 截得的弦长为 | |,若 =2,则| |= .
【答案】1
【解析】解:由题意,|MF|=x0+ . ∵圆M与线段MF相交于点A,且被直线x= 截得的弦长为 | |,
∴|MA|=2(x0﹣ ),
∵ =2,
∴|MF|= |MA|,
∴x0=p,
∴2p2=8,∴p=2,
∴| |=1.
故答案为1.
由题意,|MF|=x0+ .利用圆M与线段MF相交于点A,且被直线x= 截得的弦长为 | |,可得|MA|=2(x0﹣ ),利用 =2,求出x0 , p,即可求出| |.
【题目】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天记录的各需求量的频率作为各需求量发生的概率.
(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;
(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.
【题目】当今,手机已经成为人们不可或缺的交流工具,人们常常把喜欢玩手机的人冠上了名号“低头族”,手机已经严重影响了人们的生活,一媒体为调查市民对低头族的认识,从某社区的500名市民中,随机抽取n名市民,按年龄情况进行统计的得到频率分布表和频率分布直方图如下:
组数 | 分组(单位:岁) | 频数 | 频率 |
1 | [20,25) | 5 | 0.05 |
2 | [25,30) | 20 | 0.20 |
3 | [30,35) | a | 0.35 |
4 | [35,40) | 30 | b |
5 | [40,45] | 10 | 0.10 |
合计 | n | 1.00 |
(1)求出表中的a,b,n的值,并补全频率分布直方图;
(2)媒体记者为了做好调查工作,决定从所随机抽取的市民中按年龄采用分层抽样的方法抽取20名接受采访,再从抽出的这20名中年龄在[30,40)的选取2名担任主要发言人.记这2名主要发言人年龄在[35,40)的人数为ξ,求ξ的分布列及数学期望.