题目内容
直线与椭圆相交于两点,该椭圆上点使的面积等于6,这样的点共有( )
A.1个 | B.2个 | C.3个 | D.4个 |
B
试题分析:直线与的交点分别为,恰好为椭圆的一个长轴端点和一个短轴端点,所以这两个点即为直线与椭圆的交点,所以因为的面积等于6,所以点到直线的距离为,下面问题就转化为与直线平行且距离为的直线与椭圆有几个交点.可以设与平行的直线为,利用平行线间的距离公式可以求得或当时,直线过椭圆中心,所以和椭圆有两个交点,当时,直线与椭圆相离,所以只有两个符合条件的点.
点评:比较复杂的问题要合理转化,比如本题最后就转化成了直线与椭圆的交点各数问题,这样才能化繁为简,使问题得到解决.
练习册系列答案
相关题目