题目内容
【题目】在①acosB+bcosA=cosC;②2asinAcosB+bsin2A=a;③△ABC的面积为S,且4S=(a2+b2-c2),这三个条件中任意选择一个,填入下面的问题中,并求解,在锐角△ABC中,角A,B,C所对的边分别为a,b,c,函数=2sinωxcosωx+2cos2ωx的最小正周期为π,c为在[0,]上的最大值,求a-b的取值范围.注:如果选择多个条件分别解答,那么按第一个解答计分.
【答案】三种情况,a-b的取值范围都是
【解析】
对于①,利用正弦定理结合条件得到角C的大小,再用正弦定理用角A表示边a,b,从而得到三角函数式,进而用三角恒等变换和三角函数有界性得到结果;对于②,利用正弦定理,结合条件得到角C的大小,同①得到结果;对于③,利用余弦定理,结合条件得到角C的大小,同①得到结果.
函数=2sinωxcosωx+2cos2ωx
,
函数的最小正周期为π,则,,
当[0,],,
,故c=3,
若选①,acosB+bcosA=cosC,
由正弦定理得
可得,
,
又C为三角形内角,则,
由正弦定理得,
∴,,
则
,
因为
故.
若选②,2asinAcosB+bsin2A=a,
由正弦定理得,
,
,
又C为三角形内角,则,(舍去),
由正弦定理得,
∴,,
则
,
因为
故.
若选③,△ABC的面积为S,且4S=(a2+b2-c2),
可得,
,
,
又C为三角形内角,则,
由正弦定理得,
∴,,
则
,
因为
故.
【题目】已知A,B是抛物线上的两点,且在x轴两侧,若AB的中点为Q,分别过A,B两点作T的切线,且两切线相交于点P.
(1)求证:直线PQ平行于x轴;
(2)若直线AB经过抛物线T的焦点,求面积的最小值.
【题目】党的十九大明确把精准脱贫作为决胜全面建成小康社会必须打好的三大攻坚战之一,为坚决打赢脱贫攻坚战,某帮扶单位考察了甲乙两种不同的农产品加工生产方式,现对两种生产方式加工的产品质量进行测试并打分对比,得到如下数据:
生产方式甲 | 分值区间 | |||||
频数 | 20 | 30 | 100 | 40 | 10 | |
生产方式乙 | 分值区间 | |||||
频数 | 25 | 35 | 60 | 50 | 30 |
其中产品质量按测试指标可划分为:指标在区间上的为特优品,指标在区间上的为一等品,指标在区间上的为二等品.
(1)用事件表示“按照生产方式甲生产的产品为特优品”,估计的概率;
(2)填写下面列联表,并根据列联表判断能否有的把握认为“特优品”与生产方式有关?
特优品 | 非特优品 | |
生产方式甲 | ||
生产方式乙 |
(3)根据打分结果对甲乙两种生产方式进行优劣比较.
附表:
0.10 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
参考公式:,其中.