题目内容
7.设f(n)=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$(n∈N*),判断数列{f(n)}的单调性.分析 作差f(n+1)-f(n)即可判断出单调性.
解答 解:f(n+1)-f(n)=$\frac{1}{n+2}$+…+$\frac{1}{2n}$+$\frac{1}{2n+1}$+$\frac{1}{2n+2}$-($\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$)
=$\frac{1}{2n+1}$+$\frac{1}{2n+2}$-$\frac{1}{n+1}$
=$\frac{1}{2n+1}$-$\frac{1}{2n+2}$>0,
∴数列{f(n)}单调递增.
点评 本题考查了“作差法”、数列的单调性,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
2.若{$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$}是空间的一个基底,则下列各组中不能构成空间一个基底的是( )
A. | $\overrightarrow{a}$,2$\overrightarrow{b}$,3$\overrightarrow{c}$ | B. | $\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{b}$$+\overrightarrow{c}$,$\overrightarrow{c}$$+\overrightarrow{a}$ | C. | $\overrightarrow{a}$+2$\overrightarrow{b}$,2$\overrightarrow{b}$+3$\overrightarrow{c}$,3$\overrightarrow{a}$-9$\overrightarrow{c}$ | D. | $\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$,$\overrightarrow{b}$,$\overrightarrow{c}$ |