题目内容

已知椭圆的离心率为,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆O相切。

(Ⅰ)求椭圆C1的方程;

(Ⅱ)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1,且垂直于椭圆的长轴,动直线l2垂直于l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;

(Ⅲ)设C2与x轴交于点Q,不同的两点R、S在C2上,且 满足,求的取值范围。

 

【答案】

(1);(2);(2).

【解析】

 解:(1)由                                   (2分)

    由直线

所以椭圆的方程是                                          (4分)

(2)由条件,知|MF2|=|MP|。即动点M到定点F2的距离等于它到直线的距离,由抛物线的定义得点M的轨迹C2的方程是。                (8分)

(3)由(2),知Q(0,0)。设

所以当的取值范围是。   

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网