题目内容

(2013•盐城三模)选修4-2:矩阵与变换
已知矩阵M=
.
1a
b1
.
对应的变换将点A(1,1)变为A′(0,2),将曲线C:xy=1变为曲线C′.
(1)求实数a,b的值;
(2)求曲线C′的方程.
分析:(1)先根据矩阵M对应的变换将点A(1,1)变为A′(0,2),建立二元一次方程组求出实数a,b的值;
(2)由(1)得矩阵M,然后设曲线C:xy=1上的任意一点P(x',y'),变换后的点为P'(x,y)的关系,将点P(x',y')的坐标代入曲线C:xy=1的方程即可求出曲线C′的方程.
解答:解:(1)由已知得M
1′
1′
=
0′
2′
,即
1a
b1
1′
1′
=
0′
2′
,∴
1+a=0
b+1=2

a=-1
b=1

(2)设点P(x',y')是曲线C:xy=1上的任意一点,变换后的点为P'(x,y)
1-1
11
x′′
y′′
=
x′
y′
,即
x′-y′=x
x′+y′=y
,解得
x′=
x+y
2
y′=
y-x
2

因为x′y′=1,所以
y+x
2
×
y-x
2
=1,即
y2
4
-
x2
4
=1
.即曲线C′的方程为
y2
4
-
x2
4
=1
点评:本题主要考查矩阵与变换、曲线在矩阵变换下的曲线的方程,考查运算求解能力及化归与转化思想.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网