题目内容

数列{an}的首项为a1=
5
6
,以a1,a2,a3,…,an-1,an为系数的二次方程an-1x2-anx+1=0(n≥2,且n∈N+)都有根α、β,且α、β满足3α-αβ+3β=1.
(1)求证:{an-
1
2
}
是等比数列;           
(2)求{an}的通项公式;
(3)记Sn为{an}的前n项和,对一切n∈N+,不等式2Sn-n-2λ≥0恒成立,求λ的取值范围.
分析:(1)由韦达定理,得α+β=
an
an-1
,且αβ=
1
an-1
(n≥2,且n∈N+). 代入3α-αβ+3β=1,整理构造出数列{an-
1
2
}
再证是等比数列;  
(2)在(1)的基础上,先求数列{an-
1
2
}
的通项公式,再得出{an}的通项公式
(3)由(2)可求得Sn=a1+a2+…+an=
n
2
+(
1
3
+
1
32
+…+
1
3n
)
,不等式2Sn-n-2λ≥0恒成立,只需λ≤(Sn-
n
2
)min=S1-
1
2
解答:解:(1)由α、β是方程an-1x2-anx+1=0的两根,得α+β=
an
an-1

αβ=
1
an-1
(n≥2,且n∈N+).又由3α-αβ+3β=1得3(α+β)-αβ=1,
3an
an-1
-
1
an-1
=1
,整理得3an-1=an-1(n≥2).
an-
1
2
=
1
3
(an-1-
1
2
)
(n≥2,且n∈N+).
{an-
1
2
}
是等比数列,且公比q=
1
3
.    
(2)∵a1=
5
6
,∴a1-
1
2
=
1
3
,则an-
1
2
=
1
3
×(
1
3
)n-1

an=
1
2
+(
1
3
)n
.    …(7分)
(3)∵Sn=a1+a2+…+an=
n
2
+(
1
3
+
1
32
+…+
1
3n
)

=
n
2
+
1
3
[1-(
1
3
)
n
]
1-
1
3
=
n
2
+
1
2
(1-
1
3n
)

Sn-
n
2
=
1
2
(1-
1
3n
)
.又显然数列{Sn-
n
2
}是递增数列,
∴要使对一切n∈N+,不等式2Sn-n-2λ≥0恒成立,
只需λ≤(Sn-
n
2
)min=S1-
1
2
=a1-
1
2
=
5
6
-
1
2
=
1
3

∴λ的取值范围是(-∞,
1
3
]
点评:本题主要考查了利用递推关系 an=
S1,n=1
Sn-Sn-1,n≥2
及构造等比数列求数列的通项公式,分组数列的求和,不等式的恒成立问题的转化求最值,体现了转化思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网