题目内容
如图所示,AB是☉O的直径,弦BD、CA的延长线相交于点E,F为BA延长线上一点,且BD·BE=BA·BF,求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240406389292827.jpg)
(1)EF⊥FB;
(2)∠DFB+∠DBC=90°.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240406389292827.jpg)
(1)EF⊥FB;
(2)∠DFB+∠DBC=90°.
见解析
证明:(1)连接AD.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240406389922864.jpg)
在△ADB和△EFB中,
∵BD·BE=BA·BF,
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040639039515.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040639039541.png)
又∠DBA=∠FBE,
∴△ADB∽△EFB,
又∵AB为☉O直径,
∴∠EFB=∠ADB=90°,即EF⊥FB.
(2)由(1)知∠ADB=∠ADE=90°,∠EFB=90°,
∴E、F、A、D四点共圆,
∴∠DFB=∠AEB.
又AB是☉O的直径,则∠ACB=90°,
∴∠DFB+∠DBC=∠AEB+∠DBC=90°.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目