题目内容

已知m>1,直线l:x-my-
m2
2
=0,椭圆C:
x2
m2
+y2=1,F1、F2分别为椭圆C的左、右焦点.
(Ⅰ)当直线l过右焦点F2时,求直线l的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,△AF1F2,△BF1F2的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.
(Ⅰ)因为直线l:x-my-
m2
2
=0,经过F2
m2-1
,0),
所以
m2-1
=
m2
2
,得m2=2,
又因为m>1,所以m=
2

故直线l的方程为x-
2
y-1=0.
(Ⅱ)设A(x1,y1),B(x2,y2).
x=my+
m2
2
x2
m2
+y2=1
,消去x得
2y2+my+
m2
4
-1=0
则由△=m2-8(
m2
4
-1)=-m2+8>0,知m2<8,
且有y1+y2=-
m
2
,y1y2=
m2
8
-
1
2

由于F1(-c,0),F2(c,0),故O为F1F2的中点,
AG
=2
GO
BH
=2
H0
,可知G(
x1
3
y1
,3
),H(
x2
3
y2
3

|GH|2=
(x1-x2)2
9
+
(y1-y2)2
9

设M是GH的中点,则M(
x1+x2
6
y1+y2
6
),
由题意可知2|MO|<|GH|
即4[(
x1+x2
6
2+(
y1+y2
6
2]<
(x1-x2)2
9
+
(y1-y2)2
9
即x1x2+y1y2<0
而x1x2+y1y2=(my1+
m2
2
)(my2+
m2
2
)+y1y2=(m2+1)(
m2
8
-
1
2

所以(
m2
8
-
1
2
)<0,即m2<4
又因为m>1且△>0
所以1<m<2.
所以m的取值范围是(1,2).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网