ÌâÄ¿ÄÚÈÝ
11£®¶ÔÓÚÇúÏßCËùÔÚƽÃæÉϵĶ¨µãP0£¬Èô´æÔÚÒÔµãP0Ϊ¶¥µãµÄ½Ç¦Á£¬Ê¹µÃ¦Á¡Ý¡ÏAP0B¶ÔÓÚÇúÏßCÉϵÄÈÎÒâÁ½¸ö²»Í¬µÄµãA£¬Bºã³ÉÁ¢£¬Ôò³Æ½Ç¦ÁΪÇúÏßCÏà¶ÔÓÚµãP0µÄ¡°½ç½Ç¡±£¬²¢³ÆÆäÖÐ×îСµÄ¡°½ç½Ç¡±ÎªÇúÏßCÏà¶ÔÓÚµãP0µÄ¡°È·½ç½Ç¡±£®ÇúÏßC£ºy=$\left\{\begin{array}{l}\sqrt{{x^2}+1}£¨x¡Ý0£©\\ 2-\sqrt{1-{x^2}}£¨x£¼0£©\end{array}$Ïà¶ÔÓÚ×ø±êÔµãOµÄ¡°È·½ç½Ç¡±µÄ´óСÊÇ$\frac{5¦Ð}{12}$£®·ÖÎö »³öº¯Êýf£¨x£©µÄͼÏ󣬹ýµãO×÷³öÁ½ÌõÖ±ÏßÓëÇúÏßÎÞÏÞ½Ó½ü£¬x¡Ý0ʱ£¬ÇúÏßy=$\sqrt{{x}^{2}+1}$ÓëÖ±Ïßy=k1xÎÞÏÞ½Ó½ü£¬¿¼Âǽ¥½üÏߣ¬Çó³ök1=1£»x£¼0ʱ£¬ÇúÏß¿É»¯Îªx2+£¨y-2£©2=1£¨x£¼0£©£¬Ô²Ðĵ½Ö±ÏߵľàÀëΪ$\frac{2}{\sqrt{{{k}_{2}}^{2}+1}}$=1£¬¹Êk2=-$\sqrt{3}$£¬ÔÙÓÉÁ½Ö±Ïߵļнǹ«Ê½¼´¿ÉµÃµ½ËùÇóµÄ¡°È·½ç½Ç¡±£®
½â´ð ½â£º»³öº¯Êýf£¨x£©µÄͼÏ󣬹ýµãO×÷³öÁ½ÌõÖ±ÏßÓëÇúÏßÎÞÏÞ½Ó½ü£¬ÉèËüÃǵķ½³Ì·Ö±ðΪy=k1x£¬y=k2x£¬
µ±x¡Ý0ʱ£¬ÇúÏßy=$\sqrt{{x}^{2}+1}$ÓëÖ±Ïßy=k1xÎÞÏÞ½Ó½ü£¬¼´ÎªË«ÇúÏߵĽ¥½üÏߣ¬¹Êk1=1£»
µ±x£¼0ʱ£¬ÇúÏß¿É»¯Îªx2+£¨y-2£©2=1£¨x£¼0£©£¬Ô²Ðĵ½Ö±ÏߵľàÀëΪ$\frac{2}{\sqrt{{{k}_{2}}^{2}+1}}$=1£¬¹Êk2=-$\sqrt{3}$£¬
ÓÉÁ½Ö±Ïߵļнǹ«Ê½µÃ£¬tan¦È=|$\frac{1+\sqrt{3}}{1-\sqrt{3}}$|=2+$\sqrt{3}$£¬
¹ÊÇúÏßCÏà¶ÔÓÚµãOµÄ¡°È·½ç½Ç¡±Îª$\frac{5¦Ð}{12}$£®
¹Ê´ð°¸Îª£º$\frac{5¦Ð}{12}$£®
µãÆÀ ±¾Ì⿼²éж¨Òå¡°È·½ç½Ç¡±¼°Ó¦Ó㬿¼²éÖ±ÏßÓëÔ²µÄλÖùØϵ£¬Ë«ÇúÏßµÄÐÔÖÊ£º½¥½üÏߣ¬ÊôÓÚÖеµÌ⣮
A£® | $x=-\frac{¦Ð}{12}$ | B£® | $x=\frac{¦Ð}{12}$ | C£® | $x=\frac{¦Ð}{3}$ | D£® | $x=\frac{2¦Ð}{3}$ |
A£® | $\frac{{3}^{6}-1}{2}$ | B£® | $\frac{{3}^{6}+1}{2}$ | C£® | $\frac{{3}^{6}+2}{2}$ | D£® | $\frac{{3}^{6}-2}{2}$ |
A£® | 0 | B£® | $\frac{1}{2}$ | C£® | 1 | D£® | 2 |