题目内容
【题目】如图,四棱锥的底面是菱形,底面,分别是的中点,,,.
(I)证明:;
(II)求直线与平面所成角的正弦值;
(III)在边上是否存在点,使与所成角的余弦值为,若存在,确定点位置;若不存在,说明理由.
【答案】(Ⅰ)见解析; (Ⅱ); (Ⅲ)见解析.
【解析】
(Ⅰ)由题意结合几何关系可证得平面,据此证明题中的结论即可;
(Ⅱ)建立空间直角坐标系,求得直线的方向向量与平面的一个法向量,然后求解线面角的正弦值即可;
(Ⅲ)假设满足题意的点存在,设,由直线与的方向向量得到关于的方程,解方程即可确定点F的位置.
(Ⅰ)由菱形的性质可得:,结合三角形中位线的性质可知:,故,
底面,底面,故,
且,故平面,
平面,
(Ⅱ)由题意结合菱形的性质易知,,,
以点O为坐标原点,建立如图所示的空间直角坐标系,
则:,
设平面的一个法向量为,
则:,
据此可得平面的一个法向量为,
而,
设直线与平面所成角为,
则.
(Ⅲ)由题意可得:,假设满足题意的点存在,
设,,
据此可得:,即:,
从而点F的坐标为,
据此可得:,,
结合题意有:,解得:.
故点F为中点时满足题意.
练习册系列答案
相关题目