题目内容

【题目】在三棱柱 中,底面为正三角形,侧棱垂直底面, .若 分别是棱 上的点,且 ,则异面直线 所成角的余弦值为( )

A.
B.
C.
D.

【答案】D
【解析】

为原点, 轴,在平面 中过作 的垂线为 轴, 轴,建立空间直角坐标系, 在三棱柱 中,底面为正三角形,侧棱垂直底面, , 分别是棱 上的点,且 , , 设异面直线 所成角所成角为 , 则 .所以异面直线 所成角的余弦值为 .
所以答案是:D.


【考点精析】认真审题,首先需要了解异面直线及其所成的角(异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系),还要掌握用空间向量求直线间的夹角、距离(已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网