题目内容
【题目】已知函数.
(1)求函数的单调区间;
(2)当时,函数的图象恒不在轴的上方,求实数的取值范围.
【答案】(1)当时,增区间为,当时,递增区间为,减区间为;(2).
【解析】分析:(1)求导可得,分和两种情况讨论可得函数的单调区间.(2)由题意得,且在上恒成立,,令,则,然后再根据的范围分类讨论可得所求范围.
详解:(1)∵,
∴.
①当时,则,所以在上单调递增;
②当时,则由得,由得,
所以在上单调递增,在上单调递减.
综上,当时,的单调递增区间为;
当时,的单调递增区间为,单调递减区间为.
(2)由题意得,
∵当时,函数的图象恒不在轴的上方,
∴在上恒成立.
设,
则.
令,
则,
①若,则,故在上单调递增,
∴,
∴在上单调递增,
∴,
从而,不符合题意.
②若,当时,,在上单调递增,
∴,
∴在上单调递增,
∴,
从而在上,不符合题意;
③若,则在上恒成立,
∴在上单调递减,
∴,
∴在上单调递减,
∴,
从而恒成立.
综上可得实数的取值范围是.
【题目】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有人,现采用分层抽样的方法,从该单位上述员工中抽取人调查专项附加扣除的享受情况.
(Ⅰ)应从老、中、青员工中分别抽取多少人?
(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为.享受情况如右表,其中“”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.
员工 项目 | A | B | C | D | E | F |
子女教育 | ○ | ○ | × | ○ | × | ○ |
继续教育 | × | × | ○ | × | ○ | ○ |
大病医疗 | × | × | × | ○ | × | × |
住房贷款利息 | ○ | ○ | × | × | ○ | ○ |
住房租金 | × | × | ○ | × | × | × |
赡养老人 | ○ | ○ | × | × | × | ○ |
(i)试用所给字母列举出所有可能的抽取结果;
(ii)设为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件发生的概率.