题目内容

【题目】已知在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为ρ= 4cosθ,直线l的参数方程为(t为参数).

1)求曲线的直角坐标方程及直线l的普通方程;

2)若曲线的参数方程为(α为参数),曲线上点P的极角为Q为曲线上的动点,求PQ的中点M到直线l距离的最大值.

【答案】1;(2

【解析】

1)利用极坐标和直角坐标的转换公式,求得的直角坐标方程;消去直线参数方程中的参数,求得直线的普通方程.

2)求得点的直角坐标,由此求得点坐标,利用点到直线距离公式列式,结合三角函数最值的求法,求得到直线距离的最大值.

1)由,即.

消去.

2)令,则,所以,对应的直角坐标为,即.依题意,所以,点到直线的距离为

,从而最大值为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网