题目内容
已知△ABC的三个内角A、B、C满足A+C=2B.
,求cos的值.
,求cos的值.
cos
解法一:由题设条件知B=60°,A+C=120°.
设α=,则A-C=2α,可得A=60°+α,C=60°-α,
依题设条件有
整理得4cos2α+2cosα-3=0(M)
(2cosα-)(2cosα+3)=0,∵2cosα+3≠0,
∴2cosα-=0. 从而得cos.
解法二:由题设条件知B=60°,A+C=120°
①,
把①式化为cosA+cosC=-2cosAcosC ②,
利用和差化积及积化和差公式,②式可化为
③,
将cos=cos60°=,cos(A+C)=-代入③式得
④
将cos(A-C)=2cos2()-1代入④:
4cos2()+2cos-3=0,(*),
设α=,则A-C=2α,可得A=60°+α,C=60°-α,
依题设条件有
整理得4cos2α+2cosα-3=0(M)
(2cosα-)(2cosα+3)=0,∵2cosα+3≠0,
∴2cosα-=0. 从而得cos.
解法二:由题设条件知B=60°,A+C=120°
①,
把①式化为cosA+cosC=-2cosAcosC ②,
利用和差化积及积化和差公式,②式可化为
③,
将cos=cos60°=,cos(A+C)=-代入③式得
④
将cos(A-C)=2cos2()-1代入④:
4cos2()+2cos-3=0,(*),
练习册系列答案
相关题目