题目内容

19.求证:(x2+y2-4y-6)+λ(x2+y2-5x+y-6)=0恒过两定点.

分析 由圆系方程可知(x2+y2-4y-6)+λ(x2+y2-5x+y-6)=0恒过两圆x2+y2-4y-6=0,x2+y2-5x+y-6=0的交点,联立方程组得答案.

解答 证明:由(x2+y2-4y-6)+λ(x2+y2-5x+y-6)=0,
联立$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}-4y-6=0}\\{{x}^{2}+{y}^{2}-5x+y-6=0}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=-1}\\{y=-1}\end{array}\right.$ 或$\left\{\begin{array}{l}{x=3}\\{y=3}\end{array}\right.$.
∴(x2+y2-4y-6)+λ(x2+y2-5x+y-6)=0恒过两定点(-1,-1),(3,3).

点评 本题考查圆系方程,考查方程组的解法,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网