题目内容

(本小题满分14分)

已知函数f(x)=,g(x)=alnx,aR。

若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值及该切线的方程;

设函数h(x)=f(x)- g(x),当h(x)存在最小之时,求其最小值(a)的解析式;

对(2)中的(a),证明:当a(0,+)时, (a)1.

解 (1)f’(x)=,g’(x)=(x>0),

由已知得  =alnx,

=,     解德a=,x=e2,

两条曲线交点的坐标为(e2,e)   切线的斜率为k=f’(e2)= ,

切线的方程为y-e=(x- e2).

(2)由条件知

Ⅰ 当a.>0时,令h (x)=0,解得x=,

所以当0 < x< h (x)<0,h(x)在(0,)上递减;

x>时,h (x)>0,h(x)在(0,)上递增。

所以x>h(x)在(0, +∞ )上的唯一极致点,且是极小值点,从而也是h(x)最小值点。

所以Φ (a)=h()= 2a-aln=2

Ⅱ当a  ≤   0时,h(x)=(1/2-2a) /2x>0,h(x)在(0,+∞)递增,无最小值。

故 h(x) 的最小值Φ (a)的解析式为2a(1-ln2a) (a>o)

(3)由(2)知Φ (a)=2a(1-ln2a)

则 Φ 1a )=-2ln2a,令Φ 1a )=0 解得 a =1/2

当  0<a<1/2时,Φ 1a )>0,所以Φ a )  在(0,1/2) 上递增

当  a>1/2  时, Φ 1a )<0,所以Φa ) 在 (1/2, +∞)上递减。

所以Φa )在(0, +∞)处取得极大值Φ1/2 )=1

因为Φa )在(0, +∞)上有且只有一个极致点,所以Φ1/2)=1也是Φa)的最大值

所当a属于 (0, +∞)时,总有Φa)  ≤  1

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网