题目内容

【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数,α为直线的倾斜角).以平面直角坐标系xOy极点,x的正半轴为极轴,取相同的长度单位,建立极坐标系.圆的极坐标方程为ρ=2cosθ,设直线与圆交于A,B两点. (Ⅰ)求圆C的直角坐标方程与α的取值范围;
(Ⅱ)若点P的坐标为(﹣1,0),求 + 取值范围.

【答案】解:(Ⅰ)∵圆的极坐标方程为ρ=2cosθ, ∴圆C的直角坐标方程x2+y2﹣2x=0,
代入x2+y2﹣2x=0,得t2﹣4tcosα+3=0,
又直线l与圆C交于A,B两点,∴△=16cos2α﹣12>0,
解得:
又由α∈[0,π),故α的取值范围
(Ⅱ)设方程t2﹣4tcosα+3=0的两个实数根分别为t1 , t2
则由参数t的几何意义可知:
又由 ,∴
的取值范围为
【解析】(Ⅰ)由圆的极坐标方程,能求出圆C的直角坐标方程,把 代入x2+y2﹣2x=0,得t2﹣4tcosα+3=0,由此利用根的判别式能求出α的取值范围. (Ⅱ)设方程t2﹣4tcosα+3=0的两个实数根分别为t1 , t2 , 则由参数t的几何意义可知: ,由此能求出 的取值范围.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网