题目内容
【题目】已知函数
(1)若为单调增函数,求实数的值;
(2)若函数无最小值,求整数的最小值与最大值之和.
【答案】(1).(2)
【解析】
(1)求出,再令,求出两个根,函数为单调函数,所以有两个相同的根,得到,再进行检验即可;
(2)由得,或和,分别当、和三种情况进行讨论;时不成立,时成立,时,利用函数单调性,当无最小值时,,构造关于的函数,求出的范围,即可得到答案.
(1) 由题意,,
,解得,或,
因为函数为单调函数,所以有两个相同的根,即,
时,,为增函数,故适合题意;
(2)由(1)知,,解得,或,
①当时,则在上为减函数,
在上为增函数,
当时,有最小值,
故不适合题意;
②当时,则在上为增函数,
在上为增函数,
在上为增函数,无最小值,故适合题意;
③当时,则在上为增函数,
在上为减函数,
在上为增函数,
因为无最小值,
所以,
,
由在上恒成立,
在上单调递增,
且 存在唯一的实根
在上单调递减; 在上单调递增增,
且
存在唯一的实根,
由,
无最小值,则,,
综上,,,
,.
练习册系列答案
相关题目
【题目】金秋九月,丹桂飘香,某高校迎来了一大批优秀的学生.新生接待其实也是和社会沟通的一个平台.校团委、学生会从在校学生中随机抽取了160名学生,对是否愿意投入到新生接待工作进行了问卷调查,统计数据如下:
愿意 | 不愿意 | |
男生 | 60 | 20 |
女士 | 40 | 40 |
(1)根据上表说明,能否有99%把握认为愿意参加新生接待工作与性别有关;
(2)现从参与问卷调查且愿意参加新生接待工作的学生中,采用按性别分层抽样的方法,选取10人.若从这10人中随机选取3人到火车站迎接新生,设选取的3人中女生人数为,写出的分布列,并求.
附:,其中.
0.05 | 0.01 | 0.001 | |
3.841 | 6.635 | 10.828 |