题目内容
【题目】已知函数
(I)求函数f(x)的最小正周期和对称中心的坐标
(II)设,求函数g(x)在上的最大值,并确定此时x的值
【答案】(I) , . (II) 见解析.
【解析】试题分析:(Ⅰ)由二倍角公式和化一公式化简可得;
(Ⅱ)由(Ⅰ)知的解析式,把代入求,进而求出g(x),结合x的范围,求出最大值即可.
试题解析:(I)
∴函数f(x)的最小正周期,
由,得,
∴函数f(x)的对称中心的坐标为.
(II)由(I)可得f(x-)=2sin[ (x-)+]=2sin(x+),
∴g(x)=[f(x-)]2=4×=2-2cos(3x+),
∵x∈[-,],∴-≤3x+≤,
∴当3x+=π,即x=时,g(x)max=4.
点睛:三角函数式的化简要遵循“三看”原则:(1)一看“角”,这是最重要的一环,通过看角之间的区别和联系,把角进行合理的拆分,从而正确使用公式;(2)而看“函数名称”看函数名称之间的差异,从而确定使用公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式通分”等.
练习册系列答案
相关题目
【题目】某研究所计划利用“神十”宇宙飞船进行新产品搭载实验,计划搭载若干件新产品A、B,该所要根据该产品的研制成本、产品重量、搭载实验费用和预计产生的收益来决定具体搭载安排,有关数据如表:
每件产品A | 每件产品B | ||
研制成本、搭载 | 20 | 30 | 计划最大资金额 |
产品重量(千克) | 10 | 5 | 最大搭载重量110千克 |
预计收益(万元) | 80 | 60 |
分别用x,y表示搭载新产品A,B的件数.总收益用Z表示
(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(Ⅱ)问分别搭载新产品A、B各多少件,才能使总预计收益达到最大?并求出此最大收益.