题目内容

已知是数列的前n项和,满足关系式
n≥2,n为正整数).
(1)令,证明:数列是等差数列;
(2)求数列的通项公式;
(3)对于数列,若存在常数M>0,对任意的,恒有
M成立,称数列为“差绝对和有界数列”,
证明:数列为“差绝对和有界数列”.
(1) 见解析  (2) (3)见解析
(1)当时,                  
 
所以 ,                                      

所以
                                            
                                          
所以,  ,                                       
为等比数列                                                    
(2)                                                  
                                                  
                                                              
(3)由于         
(求和3分)                                      
所以恒成立,即为“差绝对和有界数列”。                      
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网