题目内容
【题目】已知椭圆 ,离心率 ,它的长轴长等于圆x2+y2﹣2x+4y﹣3=0的直径.
(1)求椭圆 C的方程;
(2)若过点 的直线l交椭圆C于A,B两点,是否存在定点Q,使得以AB为直径的圆经过这个定点,若存在,求出定点Q的坐标;若不存在,请说明理由?
【答案】
(1)
解:圆方程x2+y2﹣2x+4y﹣3=0化为(x﹣1)2+(y+2)2=8,则圆的直径为 ,∴ ,
由 得:c=2,b2=a2﹣c2=8﹣4=4,
以椭圆C的方程:
(2)
解:过点 作斜率为0和斜率不存在的直线l交椭圆C的两个交点为直径的圆分别为 和x2+y2=4,这两个圆的交点为(0,2).
所以猜想存在点Q(0,2),使得以 AB为直径的圆经过这个定点.
设直线 AB的方程为 ,与椭圆 ,
联立方程组得: ,
设交点A(x1,y1),B(x2,y2)得, ,
则
= ,
所以 ,
即以 AB为直径的圆经过这个定点Q(0,2)
【解析】(1)求出圆的直径为 ,推出a,由离心率求解c,然后求解椭圆C的方程.(2)猜想存在点Q(0,2),使得以 AB为直径的圆经过这个定点.设直线 AB的方程为 ,与椭圆 ,联立方程组得: ,设交点A(x1 , y1),B(x2 , y2),利用韦达定理,向量的数量积转化求解即可.
【题目】某学校为了解本校学生的身体素质情况,决定在全校的1000名男生和800名女生中按分层抽样的方法抽取45名学生对他们课余参加体育锻炼时间进行问卷调查,将学生课余参加体育锻炼时间的情况分三类:A类(课余参加体育锻炼且平均每周参加体育锻炼的时间超过3小时),B类(课余参加体育锻炼但平均每周参加体育锻炼的时间不超过3小时),C类(课余不参加体育锻炼),调查结果如表:
A类 | B类 | C类 | |
男生 | 18 | x | 3 |
女生 | 10 | 8 | y |
(1)求出表中x、y的值;
(2)根据表格统计数据,完成下面的列联表,并判断是否有90%的把握认为课余参加体育锻炼且平均每周参加体育锻炼的时间超过3小时与性别有关;
男生 | 女生 | 总计 | |
A类 | |||
B类和C类 | |||
总计 |
(3)在抽取的样本中,从课余不参加体育锻炼学生中随机选取三人进一步了解情况,求选取三人中男女都有且男生比女生多的概率. 附:K2=
P(K2≥k0) | 0.10 | 0.05 | 0.01 |
k0 | 2.706 | 3.841 | 6.635 |
【题目】某电子产品公司前四年的年宣传费x(单位:千万元)与年销售量y(单位:百万部)的数据如下表所示:
x(单位:千万元) | 1 | 2 | 3 | 4 |
y(单位:百万部) | 3 | 5 | 6 | 9 |
可以求y关于x的线性回归方程为 =1.9x+1.
参考公式:回归方程 = x+ 中斜率和截距的最小二乘法估计公式分别为:
= , = ﹣ .
(1)该公司下一年准备投入10千万元的宣传费,根据所求得的回归方程预测下一年的销售量m:
(2)根据下表所示五个散点数据,求出y关于x的线性回归方程 = x+ .
x(单位:千万元) | 1 | 2 | 3 | 4 | 10 |
y(单位:百万部) | 3 | 5 | 6 | 9 | m |
并利用小二乘法的原理说明 = x+ 与 =1.9x+1的关系.