题目内容
【题目】已知p:x∈A={x|x2﹣2x﹣3≤0,x∈R},q:x∈B={x|x2﹣2mx+m2﹣9≤0,x∈R,m∈R}.
(1)若A∩B=[1,3],求实数m的值;
(2)若p是q的充分条件,求实数m的取值范围.
【答案】(1)m=4;(2) m>6,或m<﹣4.
【解析】试题分析:(1)化简A={x|﹣1≤x≤3},B={x|m﹣3≤x≤m+3},由A∩B=[1,3],得到:m=4;
(2)若p是q的充分条件,即ACRB,易得:m>6,或m<﹣4.
试题解析:
由已知得:A={x|﹣1≤x≤3},B={x|m﹣3≤x≤m+3}.
(1)∵A∩B=[1,3]
∴ ∴, ∴m=4;
(2)∵p是q的充分条件,∴ACRB,
而CRB={x|x<m﹣3,或x>m+3}
∴m﹣3>3,或m+3<﹣1,
∴m>6,或m<﹣4.
练习册系列答案
相关题目
【题目】某企业常年生产一种出口产品,根据预测可知,进入21世纪以来,该产品的产量平稳增长.记2009年为第1年,且前4年中,第x年与年产量f(x) 万件之间的关系如下表所示:
x | 1 | 2 | 3 | 4 |
f(x) | 4.00 | 5.58 | 7.00 | 8.44 |
若f(x)近似符合以下三种函数模型之一:f(x)=ax+b,f(x)=2x+a,f(x)=logx+a.
(1)找出你认为最适合的函数模型,并说明理由,然后选取其中你认为最适合的数据求出相应的解析式;
(2)因遭受某国对该产品进行反倾销的影响,2015年的年产量比预计减少30%,试根据所建立的函数模型,确定2015年的年产量.