题目内容

函数f(x,θ)=
x2-x-xsinθ+8
x-1-sinθ
(x>2)的最小值为(  )
A.4
2
B.2
2
C.1+4
2
D.-1+4
2
∵x>2,
∴x-1-sinθ>0,
f(x,θ)=
x2-x-xsinθ+8
x-1-sinθ
=
x(x-1-sinθ)+8
x-1-sinθ
=x+
8
x-1-sinθ
=x-1-sinθ+
8
x-1-sinθ
+1+sinθ≥2
(x-1-sinθ)•
8
x-1-sinθ
+1+sinθ,
当且仅当x-1-sinθ=
8
x-1-sinθ
即x-1-sinθ=2
2
此时x=1+2
2
+sinθ取等号;
而sinθ∈[-1,1],
∴当sinθ=-1,x=2
2
时,函数f(x,θ)=
x2-x-xsinθ+8
x-1-sinθ
(x>2)取最小值为4
2

故选A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网