题目内容
函数f(x,θ)=
(x>2)的最小值为( )
x2-x-xsinθ+8 |
x-1-sinθ |
A.4
| B.2
| C.1+4
| D.-1+4
|
∵x>2,
∴x-1-sinθ>0,
而f(x,θ)=
=
=x+
=x-1-sinθ+
+1+sinθ≥2
+1+sinθ,
当且仅当x-1-sinθ=
即x-1-sinθ=2
此时x=1+2
+sinθ取等号;
而sinθ∈[-1,1],
∴当sinθ=-1,x=2
时,函数f(x,θ)=
(x>2)取最小值为4
.
故选A.
∴x-1-sinθ>0,
而f(x,θ)=
x2-x-xsinθ+8 |
x-1-sinθ |
x(x-1-sinθ)+8 |
x-1-sinθ |
8 |
x-1-sinθ |
8 |
x-1-sinθ |
(x-1-sinθ)•
|
当且仅当x-1-sinθ=
8 |
x-1-sinθ |
2 |
2 |
而sinθ∈[-1,1],
∴当sinθ=-1,x=2
2 |
x2-x-xsinθ+8 |
x-1-sinθ |
2 |
故选A.
练习册系列答案
相关题目