题目内容
【题目】在等比数列{}中,,公比,且, 与的等比中项为2.
(1)求数列{}的通项公式;
(2)设 ,求:数列{}的前项和为,
【答案】(1)(2)
【解析】
试题分析:(1)由a1a5=,a2a8=原式可化为+2a3a5+=25,即a3+a5=5,又由a3a5=4,解出q,a1即可.(2)代入中,得到bn=5-n,即数列,{bn}是以4为首项,-1为公差的等差数列,根据等差数列的前n项和公式求之即可.
试题解析:解:(1)因为a1a5+2a3a5+a2a8=25,所以,+2a3a5+=25
又an>o,…a3+a5=5, 3分
又a3与a5的等比中项为2,所以,a3a5=4
而q(0,1),所以,a3>a5,所以,a3=4,a5=1,,a1=16,所以,
6分
(2)bn=log2an=5-n,所以,bn+1-bn=-1,
所以,{bn}是以4为首项,-1为公差的等差数列 8分
所以, 10分
【题目】某课题组对春晚参加“咻一咻”抢红包活动的同学进行调查,按照使用手机系统不同(安卓系统和IOS系统)分别随机抽取5名同学进行问卷调查,发现他们咻得红包总金额数如表所示:
手机系统 | 一 | 二 | 三 | 四 | 五 |
安卓系统(元) | 2 | 5 | 3 | 20 | 9 |
IOS系统(元) | 4 | 3 | 18 | 9 | 7 |
(1)如果认为“咻”得红包总金额超过6元为“咻得多”,否则为“咻得少”,请判断手机系统与咻得红包总金额的多少是否有关?
(2)要从5名使用安卓系统的同学中随机选出2名参加一项活动,以X表示选中的同学中咻得红包总金额超过6元的人数,求随机变量X的分布列及数学期望E(X).
下面的临界值表供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
独立性检验统计量 ,其中n=a+b+c+d.