题目内容
【题目】如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.
(1)证明:EF∥BC;
(2)若AG等于⊙O的半径,且AE=MN=2 ,求四边形EBCF的面积.
【答案】
(1)证明:∵△ABC为等腰三角形,AD⊥BC,
∴AD是∠CAB的角平分线,
又∵圆O分别与AB、AC相切于点E、F,
∴AE=AF,∴AD⊥EF,
∴EF∥BC
(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,
又∵EF为圆O的弦,∴O在AD上,
连结OE、OM,则OE⊥AE,
由AG等于圆O的半径可得AO=2OE,
∴∠OAE=30°,∴△ABC与△AEF都是等边三角形,
∵AE=2 ,∴AO=4,OE=2,
∵OM=OE=2,DM= MN= ,∴OD=1,
∴AD=5,AB= ,
∴四边形EBCF的面积为 × ﹣ × × = .
【解析】(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;(2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC﹣S△AEF计算即可.
【题目】近年来空气质量逐步恶化,雾霾天气现象增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解心肺疾病是否与性别有关,在市第一人民医院随机对入院50人进行了问卷调查,得到了如表的列联表:
患心肺疾病 | 不患心肺疾病 | 合计 | |
男 | 5 | ||
女 | 10 | ||
合计 | 50 |
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为.
(1)请将上面的列联表补充完整;
(2)是否有99%的把握认为患心肺疾病与性别有关?说明你的理由.
参考格式:,其中.
下面的临界值仅供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |