题目内容

【题目】选修4一1:几何证明选讲 如图,C是以AB为直径的半圆O上的一点,过C的直线交直线AB于E,交过A点的切线于D,BC∥OD.
(Ⅰ)求证:DE是圆O的切线;
(Ⅱ)如果AD=AB=2,求EB.

【答案】证:(Ⅰ)连接AC,AB是直径,则BC⊥AC 由BC∥ODOD⊥AC

则OD是AC的中垂线∠OCA=∠OAC,∠DCA=∠DAC,
∠OCD=∠OCA+∠DCA=∠OAC+∠DAC=∠DAO=90°.
OC⊥DE,所以DE是圆O的切线.
(Ⅱ) BC∥OD∠CBA=∠DOA,∠BCA=∠DAO△ABC∽△AOD
BC= = =
BE=
【解析】(Ⅰ)要证DE是圆O的切线,连接AC,只需证出∠DAO=90°,由BC∥ODOD⊥AC,则OD是AC的中垂线.通过△AOC,△BOC均为等腰三角形,即可证得∠DAO=90°.(Ⅱ)由 BC∥OD∠CBA=∠DOA,结合∠BCA=∠DAO,得出△ABC∽△AOD,利用比例线段求出EB.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网