题目内容
【题目】直三棱柱中,底面ABC为等腰直角三角形,,,,M是侧棱上一点,设,用空间向量知识解答下列问题.
1若,证明:;
2若,求直线与平面ABM所成的角的正弦值.
【答案】(1)见解析;(2)
【解析】
1以A为原点,AB为x轴,AC为y轴,为z轴,建立空间直角坐标系,利用向量的数量积为0即可证明C. 2当时,求平面ABM的法向量,利用向量法求出直线与平面ABM所成的角的正弦值.
证明:1直三棱柱中,底面ABC为等腰直角三角形,
,,,
M是侧棱上一点,设,,
以A为原点,AB为x轴,AC为y轴,为z轴,建立空间直角坐标系,
0,,2,,0,,2,,
2,,2,,
,C.
2当时,2,,0,,
0,,2,,
设平面ABM的法向量y,,
则,取,得1,,
设直线与平面ABM所成的角为,
则.
直线与平面ABM所成的角的正弦值为.
练习册系列答案
相关题目
【题目】某校高三课外兴趣小组为了解高三同学高考结束后是否打算观看2018年足球世界杯比赛的情况,从全校高三年级1500名男生、1000名女生中按分层抽样的方式抽取125名学生进行问卷调查,情况如下表:
打算观看 | 不打算观看 | |
女生 | 20 | b |
男生 | c | 25 |
(1)求出表中数据b,c;
(2)判断是否有99%的把握认为观看2018年足球世界杯比赛与性别有关;
(3)为了计算“从10人中选出9人参加比赛”的情况有多少种,我们可以发现它与“从10人中选出1人不参加比赛”的情况有多少种是一致的.现有问题:在打算观看2018年足球世界杯比赛的同学中有5名男生、2名女生来自高三(5)班,从中推选5人接受校园电视台采访,请根据上述方法,求被推选出的5人中恰有四名男生、一名女生的概率.
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附: