题目内容
【题目】数列满足an=2an-1+2n+1(n∈N*,n≥2), .
(1)求的值;
(2)是否存在一个实数t,使得 (n∈N*),且数列{}为等差数列?若存在,求出实数t;若不存在,请说明理由;
(3)求数列的前n项和.
【答案】(1)a1=2,a2=9;(2)t=1;(3)Sn=(2n-1)×2n-n+1.
【解析】试题分析:(1)利用an=2an-1+2n+1, ,代入可求;
(2)假设存在实数t,使得{bn}为等差数列,从而有2bn=bn-1+bn+1,代入条件即可得解;
(3)利用错位相减即可得解.
试题解析:
(1)由a3=27,得27=2a2+23+1,∴a2=9,
∵9=2a1+22+1,∴a1=2.
(2)假设存在实数t,使得{bn}为等差数列,
则2bn=bn-1+bn+1(n≥2且n∈N*),
∴2× (an+t)= (an-1+t)+ (an+1+t),
∴4an=4an-1+an+1+t,
∴4an=4×+2an+2n+1+1+t,∴t=1.
即存在实数t=1,使得{bn}为等差数列.
(3)由(1),(2)得b1=,b2=,∴bn=n+,
∴an=·2n-1=(2n+1)2n-1-1,
Sn=(3×20-1)+(5×21-1)+(7×22-1)+…+[(2n+1)×2n-1-1]
=3+5×2+7×22+…+(2n+1)×2n-1-n,①
∴2Sn=3×2+5×22+7×23+…+(2n+1)×2n-2n,②
由①-②得-Sn=3+2×2+2×22+2×23+…+2×2n-1-(2n+1)×2n+n=1+2×-(2n+1)×2n+n
=(1-2n)×2n+n-1,
∴Sn=(2n-1)×2n-n+1.
练习册系列答案
相关题目