题目内容
【题目】π为圆周率,e=2.718 28…为自然对数的底数.
(1)求函数f(x)= 的单调区间;
(2) 求e3,3e,eπ,πe,3π,π3这6个数中的最大数与最小数.
【答案】(1) 函数f(x)的单调递增区间为(0,e),单调递减区间为(e,+∞);(2) 最大数是3π,最小数是3e.
【解析】
(1)利用导数求函数f(x)= 的单调区间.(2)先分析得到这6个数的最大数在π3与3π之中,最小数在3e与e3之中,再利用第1问的结论得到6个数中的最大数是3π,最小数是3e.
(1)函数f(x)的定义域为(0,+∞).
因为f(x)=,所以f′(x)=.
当f′(x)>0,即0<x<e时,函数f(x)单调递增;
当f′(x)<0,即x>e时,函数f(x)单调递减.
故函数f(x)的单调递增区间为(0,e),单调递减区间为(e,+∞).
(2)因为e<3<π,所以eln 3<eln π,πln e<πln 3,即ln 3e<ln πe,ln eπ<ln 3π.
于是根据函数y=ln x,y=ex,y=πx在定义域上单调递增,可得3e<πe<π3,e3<eπ<3π.
故这6个数的最大数在π3与3π之中,最小数在3e与e3之中.
由e<3<π及(1)的结论,得f(π)<f(3)<f(e),
即<<.
由<,得ln π3<ln 3π,所以3π>π3;
由<,得ln 3e<ln e3,所以3e<e3.
综上,6个数中的最大数是3π,最小数是3e.
【题目】随着经济的发展和人民生活水平的提高,以及城市垃圾分类收集的实施和推广,我国居民生活垃圾的平均热值逐年.上升,垃圾焚烧发电的吨上网电量(单位:千瓦时/吨)显著增加.下表为某垃圾焚烧发电厂最近五个月的生产数据.
月份代码 | |||||
吨上网电量 | |||||
若从该发电厂这五个月的生产数据(吨上网电量)中任选两个,求其中至少有一个生产数据超过的概率;
通过散点图(如图)可以发现,变量与之间的关系可以用函数(其中为自然对数的底数)来拟合,求常数,的值.
参考公式:对于一组数据,,,,其回归直线的斜率和截距的最小二乘估计公式分别为,.
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费和年销售量()数据作了初步处理,得到下面的散点图及一些统计量的值.
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1.469 | 108.8 |
表中,
(1)根据散点图判断,与哪一个适宜作为年销售量y关于年宣传费x的回归方类型?给出判断即可,不必说明理由
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;
(3)已知这种产品的年利润z与x、y的关系为根据(2)的结果回答下列问题:
①年宣传费时,年销售量及年利润的预报值是多少?
②年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据,其回归线的斜率和截距的最小二乘估计分别为:,.