题目内容
15.已知定义在R上的函数y=f(x)满足:①对于任意的x∈R,都有f(x+2)=-$\frac{1}{f(x)}$;②函数y=f(x+2)是偶函数;③当x∈(0,2]时,f(x)=ex-$\frac{1}{x}$,设a=f(-5),b=f($\frac{19}{2}$),c=f($\frac{41}{4}$),则a,b,c的大小关系( )A. | b<a<c | B. | c<a<b | C. | b<c<a | D. | a<b<c |
分析 由题意可得函数y=f(x)为周期为4的函数,从而可得c=f($\frac{41}{4}$)=f($\frac{9}{4}$),b=f($\frac{19}{2}$)=f($\frac{3}{2}$),利用函数y=f(x+2)是偶函数,可得a=f(-5)=f(3)=f(1),利用单调性即可求解.
解答 解:∵对于任意的x∈R,都有f(x+2)=-$\frac{1}{f(x)}$,
∴f(x+4)=f(x),故函数y=f(x)为周期为4的函数.
∴b=f($\frac{19}{2}$)=f($\frac{3}{2}$),
∵函数y=f(x+2)是偶函数
∴f(-x+2)=f(x+2),
∴a=f(-5)=f(3)=f(1),
∵当x∈(0,2]时,f(x)=ex-$\frac{1}{x}$是增函数,1<$\frac{3}{2}$,
∴0<a<b,
c=f($\frac{41}{4}$)=f($\frac{9}{4}$)=-$\frac{1}{f(\frac{1}{4})}$<0,
∴c<a<b.
故选:B.
点评 本题主要考查函数值的计算,根据函数奇偶性和周期性进行转化是解决本题的关键.
练习册系列答案
相关题目
10.设f(x)是定义在区间$[\begin{array}{l}{2,8}\\{\;}\end{array}]$上的函数,如果f(x)在区间$[\begin{array}{l}{2,6}\\{\;}\end{array}]$上递增,在区间$[\begin{array}{l}{6,8}\\{\;}\end{array}]$上递减,则下面关于函数f(x)的叙述正确的是( )
A. | f(2)是函数的最小值 | B. | f(8)是函数的最小值 | ||
C. | f(6)是函数的最大值 | D. | 以上结论都不对 |
4.已知$\overrightarrow{a}$=$\overrightarrow{e}$1+2$\overrightarrow{e}$2,$\overrightarrow{b}$=3$\overrightarrow{e}$1-4$\overrightarrow{e}$2,且$\overrightarrow{e}$1,$\overrightarrow{e}$2共线,则$\overrightarrow{a}$与$\overrightarrow{b}$( )
A. | 共线 | B. | 不共线 | ||
C. | $\overrightarrow{e}$1,$\overrightarrow{e}$2中必须有零向量才共线 | D. | 不能确定 |
5.设奇函数f(x)在(0,+∞)上是减函数,且f(π)=0,则不等式$\frac{f(x)-f(-x)}{x}$<0的解集是( )
A. | (-π,0)∪(π,+∞) | B. | (-∞,-π)∪(0,π) | C. | (-∞,-π)∪(π,+∞) | D. | (-π,0)∪(0,π) |