题目内容
在中,角、、所对的边分别为、、,若,则为( )
A. B. C. D.
B
【解析】
试题分析:由于,故,所以,由正弦定理可得
,故选B.
考点:1.二倍角公式;2.正弦定理
某省实验中学高三共有学生600人,一次数学考试的成绩(试卷满分150分)服从正态分布N(100,σ2),统计结果显示学生考试成绩在80分到100分之间的人数约占总人数的,则此次考试成绩不低于120分的学生约有 人.
设的定义域为D,若满足条件:存在,使在上的值域是,则称为“倍缩函数”.若函数为“倍缩函数”,则t的范围是( )
A . B. C. D.
在极坐标系中,直线与曲线相交于、两点,若,则实数的值为 .
设、是两个非零向量,则使成立的一个必要非充分的条件是( )
如图,在棱长为的正方体中,点是棱的中点,点在棱上,且满足.
(1)求证:;
(2)在棱上确定一点,使、、、四点共面,并求此时的长;
(3)求几何体的体积.
执行如图所示的程序框图,若输入,则输出的值为 .
已知F1,F2是双曲线-y2=1的两个焦点,点P在此双曲线上,·=0,如果点P到x轴的距离等于,那么该双曲线的离心率等于________.
已知A、B、C三个箱子中各装有两个完全相同的球,每个箱子里的球,有一个球标着号码1,另一个球标着号码2.现从A、B、C三个箱子中各摸出一个球.
(1)若用数组(x,y,z)中的x、y、z分别表示从A、B、C三个箱子中摸出的球的号码,请写出数组(x,y,z)的所有情形,并回答一共有多少种;
(2)如果请您猜测摸出的这三个球的号码之和,猜中有奖.那么猜什么数获奖的可能性最大?请说明理由.