题目内容

【题目】已知向量a=(2x-y+1,x+y-2),b=(2,-2).

①当x、y为何值时,a与b共线?

②是否存在实数x、y,使得a⊥b,且|a|=|b|?若存在,求出xy的值;若不存在,说明理由.

【答案】①. ;②. .

【解析】试题分析:1)由a与b共线,可得存在非零实数λ使得aλb,从而可得结论;

(2)由a⊥b得,(2x﹣y+1)×2+(x+y﹣2)×(﹣2)=0,由|a|=|b|得,(2x﹣y+1)2+(x+y﹣2)2=8,从而可得结论.

试题解析:

①∵ab共线,

存在非零实数λ使得aλb

ab(2xy1)×2(xy2)×(2)0

x2y30.(1)

|a||b|(2xy1)2(xy2)28.(2)

(1)(2)∴xy=-1xy..

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网