题目内容
【题目】对于区间,若函数同时满足:①在上是单调函数;②函数的值域是,则称区间为函数的“保值”区间.(1)写出函数的一个“保值”区间为_____________;(2)若函数存在“保值”区间,则实数的取值范围为_____________.
【答案】
【解析】
(1)由条件可知在区间上是单调函数,根据的值域判断出,由此得到从而求解出的值;
(2)设存在的“保值”区间为,考虑两种情况:、,根据单调性得到关于等式,由此表示出并求解出的范围.
(1)因为,所以的值域为,
所以,所以在上单调递增,
所以,所以,解得,所以一个“保值”区间为;
(2)若,则在上单调递减,所以,所以,
所以,所以,,
所以,
又因为,所以,所以,
所以;
当时,则在上单调递增,所以,所以,
所以,所以,,
所以,
又因为,所以,所以,
因为,所以.
综上可知:.
故答案为:;.
【题目】随着“互联网+交通”模式的迅猛发展,“共享助力单车”在很多城市相继出现.某“共享助力单车”运营公司为了解某地区用户对该公司所提供的服务的满意度,随机调查了100名用户,得到用户的满意度评分(满分10分),现将评分分为5组,如下表:
组别 | 一 | 二 | 三 | 四 | 五 |
满意度评分 | [0,2) | [2,4) | [4,6) | [6,8) | [8,10] |
频数 | 5 | 10 | a | 32 | 16 |
频率 | 0.05 | b | 0.37 | c | 0.16 |
(1)求表格中的a,b,c的值;
(2)估计用户的满意度评分的平均数;
(3)若从这100名用户中随机抽取25人,估计满意度评分低于6分的人数为多少?
【题目】为了解人们对“延迟退休年龄政策”的态度,某部门从年龄在15岁到65岁的人群中随机调查了100人,并得到如图所示的频率分布直方图,在这100人中不支持“延迟退休年龄政策”的人数与年龄的统计结果如表所示:
(1)由频率分布直方图,估计这100人年龄的平均数;
(2)根据以上统计数据填写下面的22列联表,据此表,能否在犯错误的概率不超过5%的前提下,认为以45岁为分界点的不同人群对“延迟退休年龄政策”的态度存在差异?
45岁以下 | 45岁以上 | 总计 | |
不支持 | |||
支持 | |||
总计 |
参考数据:
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |