题目内容

【题目】(1)讨论函数f(x)=ex的单调性,并证明当x>0时,(x-2)exx+2>0.

(2)证明:当a[0,1) 时,函数g(x)= (x>0) 有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.

【答案】(1)在上都是递增,证明见解析;(2)证明见解析,.

【解析】试题分析:(1)求导后分析导数大于零(或小于零)的解,即可求出单调区间,利用极小值即可证明不等式成立;(2)利用二次求导求函数的单调性最值,从而求出h(a)的值域.

试题解析:

(1)f(x)=exx(-∞,-2)(-2,+∞).

f ′(x)=ex

因为当x(-∞,-2)(-2,+∞)时,f ′(x)>0,

所以f(x)(-∞,-2)(-2,+∞)上单调递增,

所以x>0时, ex>f(0)=-1,

所以(x-2)exx+2>0.

(2)g′(x)=

a[0,1).

(1)知,当x>0时,f(x)=·ex的值域为(-1,+∞),只有一解,使得·et=-at(0,2].

x(0,t)g′(x)<0,g(x)单调递减;

x(t,+∞)g′(x)>0,g(x)单调递增.

h(a)=

k(t)=,在t(0,2]时,k′(t)=>0,

所以k(t)单调递增,

所以h(a)=k(t)

练习册系列答案
相关题目

【题目】[2018·江西联考]交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:

交强险浮动因素和浮动费率比率表

浮动因素

浮动比率

上一个年度未发生有责任道路交通事故

下浮10%

上两个年度未发生有责任道路交通事故

下浮20%

上三个及以上年度未发生有责任道路交通事故

下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

上一个年度发生两次及两次以上有责任道路交通事故

上浮10%

上一个年度发生有责任道路交通死亡事故

上浮30%

某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了80辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

数量

20

10

10

20

15

5

以这80辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:

(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,.某同学家里有一辆该品牌车且车龄刚满三年,记X为该品牌车在第四年续保时的费用,求X的分布列与数学期望值;(数学期望值保留到个位数字)

(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损4000元,一辆非事故车盈利8000元:

①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;

②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网