题目内容
18.设f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$.(1)若x1+x2=1.求f(x1)+f(x2)的值;
(2)求f($\frac{1}{1000}$)+f($\frac{2}{1000}$)+…+f($\frac{999}{1000}$)的值.
分析 (1)若x1+x2=1,则x1=1-x2,结合f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$和指数的运算性质,代和可得f(x1)+f(x2)=1,
(2)结合(1)中结论,利用倒序相加法,可得f($\frac{1}{1000}$)+f($\frac{2}{1000}$)+…+f($\frac{999}{1000}$)=$\frac{999}{2}$.
解答 解:(1)若x1+x2=1,则x1=1-x2,
则f(x1)+f(x2)=f(1-x2)+f(x2)=$\frac{{4}^{1-{x}_{2}}}{{4}^{1-{x}_{2}}+2}$+$\frac{{4}^{{x}_{2}}}{{4}^{{x}_{2}}+2}$=$\frac{({4}^{1-{x}_{2}})•2({4}^{{x}_{2}-1})}{{(4}^{1-{x}_{2}}+2)•2({4}^{{x}_{2}-1})}$+$\frac{{4}^{{x}_{2}}}{{4}^{{x}_{2}}+2}$=$\frac{2}{{4}^{{x}_{2}}+2}$+$\frac{{4}^{{x}_{2}}}{{4}^{{x}_{2}}+2}$=1.
(2)设S=f($\frac{1}{1000}$)+f($\frac{2}{1000}$)+…+f($\frac{999}{1000}$),
则S=f($\frac{999}{1000}$)+f($\frac{998}{1000}$)+…+f($\frac{1}{1000}$),
结合(1)中结论,可得:2S=999,
故f($\frac{1}{1000}$)+f($\frac{2}{1000}$)+…+f($\frac{999}{1000}$)=$\frac{999}{2}$
点评 本题考查的知识点是函数的值,其中根据已知得到x1+x2=1时,f(x1)+f(x2)=1,是解答的关键.