题目内容
(本小题满分14分)
已知椭圆的离心率为,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆O相切.
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(3)设C??2与x轴交于点Q,不同的两点R、S在C2上,且 满足,
求的取值范围.
(Ⅰ)(Ⅱ)(Ⅲ)的取值范围是.
解析:
(1)由 (2分)
由直线
所以椭圆的方程是 (4分)
(2)由条件,知|MF2|=|MP|.即动点M到定点F2的距离等于它到直线的距离,由抛物线的定义得点M的轨迹C2的方程是. (8分)
(3)由(2),知.设
所以当
故的取值范围是. (14分)
练习册系列答案
相关题目