题目内容
已知函数f(x)=,其中a∈R.若对任意的非零实数x1,存在唯一的非零实数x2(x2≠x1),使得f(x2)=f(x1)成立,则实数k的取值范围是________.
(-∞,0]∪[8,+∞)
由题知当x=0时,f(x)=k(1-a2).又对任意的非零实数x1,存在唯一的非零实数x2(x2≠x1),使得f(x2)=f(x1)成立,所以函数f(x)必须是连续函数,即在x=0附近的左、右两侧,其函数值相等.于是(3-a)2=k(1-a2),即(k+1)a2-6a+9-k=0有实数解,所以Δ=62-4(k+1)(9-k)≥0,解得k≤0或k≥8.
练习册系列答案
相关题目