题目内容

已知函数f(x)=lnx-ax+
1-a
x
-1(a∈R)

(Ⅰ)当a=-1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)当a≤
1
2
时,讨论f(x)的单调性.
(Ⅰ)当a=-1时,f(x)=lnx+x+
2
x
-1,x∈(0,+∞),
所以f′(x)=
1
x
+1-
2
x2
,因此,f′(2)=1,
即曲线y=f(x)在点(2,f(2))处的切线斜率为1,
又f(2)=ln2+2,y=f(x)在点(2,f(2))处的切线方程为y-(ln2+2)=x-2,
所以曲线,即x-y+ln2=0;
(Ⅱ)因为f(x)=lnx-ax+
1-a
x
-1

所以f′(x)=
1
x
-a+
a-1
x2
=-
ax2-x+1-a
x2
,x∈(0,+∞),
令g(x)=ax2-x+1-a,x∈(0,+∞),
(1)当a=0时,g(x)=-x+1,x∈(0,+∞),
所以,当x∈(0,1)时,g(x)>0,
此时f′(x)<0,函数f(x)单调递减;
(2)当a≠0时,由g(x)=0,
即ax2-x+1-a=0,解得x1=1,x2=
1
a
-1.
①当a=
1
2
时,x1=x2,g(x)≥0恒成立,
此时f′(x)≤0,函数f(x)在(0,+∞)上单调递减;
②当0<a<
1
2
时,
x∈(0,1)时,g(x)>0,此时f′(x)<0,函数f(x)单调递减,
x∈(1,
1
a
-1)时,g(x)<0,此时f′(x)>0,函数f(x)单调递增,
x∈(
1
a
-1,+∞)时,g(x)>0,此时f′(x)<0,函数f(x)单调递减;
③当a<0时,由于
1
a
-1<0,
x∈(0,1)时,g(x)>0,此时f′(x)<0函数f(x)单调递减;
x∈(1,+∞)时,g(x)<0此时函数f′(x)>0函数f(x)单调递增.
综上所述:
当a≤0时,函数f(x)在(0,1)上单调递减;
函数f(x)在(1,+∞)上单调递增
当a=
1
2
时,函数f(x)在(0,+∞)上单调递减
当0<a<
1
2
时,函数f(x)在(0,1)上单调递减;
函数f(x)在(1,
1
a
-1)上单调递增;
函数f(x)在(
1
a
-1,+∞)上单调递减.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网