题目内容
【题目】设函数,其中是自然对数的底数.
(Ⅰ)若在上存在两个极值点,求的取值范围;
(Ⅱ)若,函数与函数的图象交于,且线段的中点为,证明:.
【答案】(Ⅰ);(Ⅱ)详见解析.
【解析】
(Ⅰ)依题意在上存在两个极值点,等价于在有两个不等实根,由参变分类可得,令,利用导数研究的单调性、极值,从而得到参数的取值范围;
(Ⅱ)由题解得,,要证成立,只需证:,即:,只需证:,设,即证:,再分别证明,即可;
解:(Ⅰ)由题意可知,,
在上存在两个极值点,等价于在有两个不等实根,
由可得,,令,
则,令,
可得,当时,,
所以在上单调递减,且
当时,单调递增;
当时,单调递减;
所以是的极大值也是最大值,又当,当大于0趋向与0,
要使在有两个根,则,
所以的取值范围为;
(Ⅱ)由题解得,,要证成立,
只需证:
即:,
只需证:
设,即证:
要证,只需证:
令,则
在上为增函数
,即成立;
要证,只需证明:
令,则
在上为减函数,,即成立
成立,所以成立.
练习册系列答案
相关题目