题目内容

直线kx+y-2=0(k∈R)与圆x2+y2+2x-2y+1=0的位置关系是(  )
A.相交B.相切C.相离D.与k值有关
圆x2+y2+2x-2y+1=0化成标准方程,得(x+1)2+(y-1)2=1,
∴圆心为C(-1,1),半径r=1.
点C到直线kx+y-2=0的距离d=
|-k+1-2|
k2+1
=
(k+1)2
k2+1
=
1+
2k
k2+1

∴当k<0时,点C到直线的距离d<1,可得直线kx+y-2=0与圆相交;
当k=0时,点C到直线的距离d=1,可得直线kx+y-2=0与圆相切;
当k>0时,点C到直线的距离d>1,可得直线kx+y-2=0与圆相离.
综上所述,直线kx+y-2=0与圆x2+y2+2x-2y+1=0的位置关系与k的取值有关.
故选:D
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网