题目内容
【题目】已知函数.
(I)设 是的极值点.求实数的值,并求函数的单调区间;
(II)证明:当 时,.
【答案】(1) f(x)在(0,2)单调递减,在(2,+∞)单调递增.
(2)证明见解析.
【解析】分析:(I)求导,利用求出值,再利用导数的符号变化确定函数的单调区间;(II)先利用进行放缩,再构造函数、求导,利用导数确定新构造函数的最值即可.
详解:(I)f(x)的定义域为 ,f ′(x)=.
由题设知,f ′(2)=0,所以.
从而 , .
当0<x<2时,f ′(x)<0;当x>2时,f ′(x)>0.
所以f(x)在(0,2)单调递减,在(2,+∞)单调递增.
(II)当时, .
设,则
当0<x<1时,g′(x)<0;当x>1时,g′(x)>0.所以x=1是g(x)的最小值点.
故当x>0时,g(x)≥g(1)=0.
因此,当 时,.
练习册系列答案
相关题目
【题目】某地区2010年至2016年农村居民家庭人均纯收入y(单位:千元)的数据如下表:
年 份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y关于t的回归直线方程;
(2)利用(1)中的回归方程,分析2010年至2016年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2018年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别