题目内容
设函数f(x)=ax2+bx+c,且f(1)=-,3a>2c>2b,求证:
(1)a>0,且-3<<-;
(2)函数f(x)在区间(0,2)内至少有一个零点;
(3)设x1,x2是函数f(x)的两个零点,则≤|x1-x2|<.
(1)a>0,且-3<<-;
(2)函数f(x)在区间(0,2)内至少有一个零点;
(3)设x1,x2是函数f(x)的两个零点,则≤|x1-x2|<.
(1)-3<<-(2)函数f(x)在区间(0,2)内至少有一个零点.(3)见解析
(1)由已知得f(1)=a+b+c=-,∴3a+2b+2c=0,
又3a>2c>2b,∴a>0,b<0.
又2c=-3a-2b,∴3a>-3a-2b>2b,
∵a>0,∴-3<<-.
(2)由已知得f(0)=c,f(2)=4a+2b+c=a-c,
①当c>0时,f(0)=c>0,f(1)=-<0,
∴函数f(x)在区间(0,1)内至少有一个零点;
②当c≤0时,f(1)=-<0,f(2)=a-c>0,
∴函数f(x)在区间(1,2)内至少有一个零点.
综上所述,函数f(x)在区间(0,2)内至少有一个零点.
(3)∵x1,x2是函数f(x)的两个零点,
∴x1+x2=-,x1x2==--,
∴|x1-x2|==,
∵-3<<-,∴≤|x1-x2|<.
又3a>2c>2b,∴a>0,b<0.
又2c=-3a-2b,∴3a>-3a-2b>2b,
∵a>0,∴-3<<-.
(2)由已知得f(0)=c,f(2)=4a+2b+c=a-c,
①当c>0时,f(0)=c>0,f(1)=-<0,
∴函数f(x)在区间(0,1)内至少有一个零点;
②当c≤0时,f(1)=-<0,f(2)=a-c>0,
∴函数f(x)在区间(1,2)内至少有一个零点.
综上所述,函数f(x)在区间(0,2)内至少有一个零点.
(3)∵x1,x2是函数f(x)的两个零点,
∴x1+x2=-,x1x2==--,
∴|x1-x2|==,
∵-3<<-,∴≤|x1-x2|<.
练习册系列答案
相关题目